If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1=3b-b^2
We move all terms to the left:
1-(3b-b^2)=0
We get rid of parentheses
b^2-3b+1=0
a = 1; b = -3; c = +1;
Δ = b2-4ac
Δ = -32-4·1·1
Δ = 5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{5}}{2*1}=\frac{3-\sqrt{5}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{5}}{2*1}=\frac{3+\sqrt{5}}{2} $
| 3(2x-9)=18 | | f-4=32 | | P(c)=-12c^2+120c | | m2+2m=0 | | 14.36+0.06x=15.11+-0.12x | | 3b-13=8 | | 101+0.03/0.04=x | | (15x-7)=37 | | 14.36+0.06x=15.11+0.12x | | 51.91+0.18x=55.98+.14x | | 1/2(3x-65)=55 | | 2(2a+1/2=3(a-2/3 | | 22+0.15x=0+0.19x | | 22+0.15x=0+0.19 | | 1/2*(2x-20+x-45)=55 | | 14+22x=43+15x | | 8p+7=7p+10 | | (3x^2-5x+1)(x^2+2x+4)=0 | | 7-p=11(1-p) | | 3x-65=175 | | c=39.26+(.25)(100) | | 50x2-100=0 | | 2x^2-13x=171 | | 7-p=8-4p | | 40-5(2m-2)=5m+22-m | | 100=39.26+.25x | | y=12=8 | | p+6=11p | | 5(-2m+1)=15 | | p+6=4p+4 | | 7x=12x+20=20x-35=180 | | 0.4*(2x+0.3)=1/3*(6x–7.2) |